python - Calculate matrix column mean -
i've got matrix:
[[[ 0.49757494 0.50242506] [ 0.50340754 0.49659246] [ 0.50785456 0.49214544] ..., [ 0.50817149 0.49182851] [ 0.50658656 0.49341344] [ 0.49419885 0.50580115]] [[ 0.117 0.883 ] [ 0.604 0.396 ] [ 1. 0. ] ..., [ 0.98559675 0.01440325] [ 0.948 0.052 ] [ 0.012 0.988 ]] [[ 0.21099179 0.78900821] [ 0.75212493 0.24787507] [ 0.96653919 0.03346081] ..., [ 0.97485074 0.02514926] [ 0.95051503 0.04948497] [ 0.05409603 0.94590397]]]
if weights w1,w2,w3, how can calculate mean of first column , second column each matrix (3 2) ? can like:
[[[(x1 y1] ..., [x2 y2] [[x3 y3] ...,
thanks in advance.
edit: input shape (3, 37375, 2), , have instead of (3,2), (1,2). mean each column, example:
(0.497*w1 + 0.503*w2 + 0.507*w3)/ (w1 + w2 + w3) <--- first column
assuming input shape (3,n,2)
, want shape (n,3,2)
want first do
in=in.reshape((-1,3,2))
if have weighting vector w
w = np.random.rand(3)
then can weighted average on first axis np.average
(yielding (n,2)
out1 = np.average(in, weights = w, axis = 1)
or can weighted sum
out1 = np.sum(t*w[none,:, none], axis = 1) / np.sum(w)
Comments
Post a Comment